A sparse grid stochastic collocation method for elliptic partial differential equations with random input data

نویسندگان

  • F. Nobile
  • R. Tempone
  • C. G. Webster
چکیده

This work proposes and analyzes a sparse grid stochastic collocation method for solving elliptic partial differential equations with random coefficients and forcing terms (input data of the model). This method can be viewed as an extension of the Stochastic Collocation method proposed in [Babuška-Nobile-Tempone, Technical report, MOX, Dipartimento di Matematica, 2005] which consists of a Galerkin approximation in space and a collocation at the zeros of suitable tensor product orthogonal polynomials in probability space and naturally leads to the solution of uncoupled deterministic problems as in the Monte Carlo method. The full tensor product spaces suffer from the curse of dimensionality since the dimension of the approximating space grows exponentially fast in the number of random variables. If the number of random variables is moderately large, this work proposes the use of sparse tensor product spaces utilizing either Clenshaw-Curtis or Gaussian interpolants. For both situations this work provides rigorous convergence analysis of the fully discrete problem and demonstrates: (sub)-exponential convergence of the “probability error” in the asymptotic regime and algebraic convergence of the “probability error” in the pre-asymptotic regime, with respect to the total number of collocation points. The problem setting in which this procedure is recommended as well as suggestions for future enhancements to the method are discussed. Numerical examples exemplify the theoretical results and show the effectiveness of the method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Collocation for Elliptic PDEs with random data - the lognormal case

We investigate the stochastic collocation method for parametric, elliptic partial differential equations (PDEs) with lognormally distributed random parameters in mixed formulation. Such problems arise, e.g., in uncertainty quantification studies for flow in porous media with random conductivity. We show the analytic dependence of the solution of the PDE w.r.t. the parameters and use this to sho...

متن کامل

A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data

This work proposes and analyzes a Smolyak-type sparse grid stochastic collocation method for the approximation of statistical quantities related to the solution of partial differential equations with random coefficients and forcing terms (input data of the model). To compute solution statistics, the sparse grid stochastic collocation method uses approximate solutions, produced here by finite el...

متن کامل

An anisotropic sparse grid stochastic collocation method for elliptic partial differential equations with random input data

This work proposes and analyzes an anisotropic sparse grid stochastic collocation method for solving elliptic partial differential equations with random coefficients and forcing terms (input data of the model). The method consists of a Galerkin approximation in the space variables and a collocation, in probability space, on sparse tensor product grids utilizing either Clenshaw-Curtis or Gaussia...

متن کامل

A posteriori error estimation for the stochastic collocation finite element method

In this work, we consider an elliptic partial differential equation with a random coefficient solved with the stochastic collocation finite element method. The random diffusion coefficient is assumed to depend in an affine way on independent random variables. We derive a residual-based a posteriori error estimate that is constituted of two parts controlling the stochastic collocation (SC) and t...

متن کامل

A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data

In this paper we propose and analyze a Stochastic-Collocation method to solve elliptic Partial Differential Equations with random coefficients and forcing terms (input data of the model). The input data are assumed to depend on a finite number of random variables. The method consists in a Galerkin approximation in space and a collocation in the zeros of suitable tensor product orthogonal polyno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006